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The dispersive (i.e. non-Kelvin) linear wave field on the equatorial P-plane, in a single 
vertical mode, is fully described by a single potential rp. Long Rossby waves, which are 
weakly dispersive, are represented in this field. This description is free from the 
problem of the ‘spurious solution’ encountered when working with an evolution 
equation for the meridional velocity; addition of this unwanted solution represents a 
gauge transformation that leaves the physical fields unaltered. 

The general solution of the ray equations is found, including trajectories, and the 
amplitudes and phase fields. This solution is asymptotically valid for either high or low 
frequencies. The ray paths are identical in both limits, but the phase field is not, 
reflecting the isotropy of Poincare waves, in one case, and the zonal anisotropy of 
Rossby waves, in the other. 

Two examples are studied by ray theory: meridional normal modes and wave 
radiation from a point source in the equator. In the first case, the exact dispersion 
relation is obtained. In the second one, northern and southern caustics bend towards 
the equator, meeting there at focal points. The full solution is the superposition of 
many leaves and has a structure that would be hard to find in a normal modes 
expansion. 

1. Introduction 
Over two centuries ago Laplace published the definitive model of the tides in a 

rotating planet (Laplace 1778), introducing what is now known as the Coriolis 
parameter$ Many researchers have found particular solutions to Laplace’s model and 
recognized the peculiarities of the equator (namely, the line wheref= 0), e.g. to be the 
axis of a waveguide. A definitive paper was the result of the doctoral thesis of Taroh 
Matsuno (1966), who found and classified all normal modes, for one- or two-layer 
models in the equatorial P-plane. 

Matsuno (1966) worked with the equation satisfied by the meridional velocity 
component (say, 2 v  = 0) and showed that in addition to a set of PoincarC and Rossby 
waves (labelled by a positive integer n) and both Yanai waves (n = 0), there was a 
spurious solution, corresponding also to n = 0. Matsuno also proved that the set of 
equatorial modes was complete, adding to the former solutions the Kelvin wave, which 
is not a solution of 9 v  = 0. 

The same year that Matsuno’s paper appeared, Blandford (1966) published 
independently the normal modes solution and, furthermore, used ray theory (RT) for 
equatorial PoincarC and Rossby waves. Jacobs (1967) also used RT in the equatorial 
/3-plane, solving initial value problems instead of the monochromatic solutions used by 
all other authors quoted here. 
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More recently, Schopf, Anderson & Smith (1981) and Kessler (1990) used the low- 
frequency limit of equatorial RT in order to study the fate of a family of rays that leave 
due west from an eastern boundary. These authors find a focusing point at the equator, 
where the energy is concentrated. Chang & Philander (1988) added the effect of a mean 
current to this problem; thus, in addition to the refraction produced by the variations 
off,  there is a local Doppler shift and, more important, another contribution to the 
refraction due to the height changes associated with the current. 

Except for Wunsch (1977) and McCreary (1984), who considered the vertical 
propagation of equatorial signals, all of the authors mentioned above restricted their 
attention to horizontal ray-wave propagation. This will also be the framework of the 
present paper, leaving vertical effects aside. 

It should be mentioned that most of the work on RT (e.g. the papers quoted here, 
except that of Jacobs 1967), is restricted to the rays’ trajectories; phases and amplitudes 
are not analysed. This may have been an incorrect inheritance from the developments 
of RT for isotropic waves, for which ray paths and phase surfaces are orthogonal. On 
the contrary, I will show here that for anisotropic waves the structure of the phase field 
is rich in information which is unobtainable from the rays’ paths. For instance, in the 
equatorial-waves case, the trajectories form a pattern which is independent of the 
frequency, aside from a scale factor, whereas the phase field is very different for high 
or low frequencies (e.g. east-west symmetric in the first case versus a strong asymmetry 
in the second one). 

The scope of this paper is two fold: first, to propose a way to avoid the problem of 
‘contamination’ by the spurious mode and second to present a more complete solution 
of the ray equations. The horizontal domain for this study is the unbounded /I-plane, 
although occasional references to the problem with one or two zonal walls will also be 
made. The rest of this paper is thus organized as follows. In $2 the model equation and 
conservation laws are reviewed. A potential field q is introduced in $ 3  as a way to 
avoid the spurious mode problem. Ray theory is developed in $4, and the general 
solution to the ray equations is found in $ 5 .  The theory is applied, in $ 6 ,  to two 
different problems : the meridional normal modes and an equatorial point source. 
Concluding remarks are presented in $7 and some mathematical details are left for an 
Appendix. 

2. Model equations 
Consider infinitesimal deviations from an ocean at rest in the equatorial /I-plane 

(Moore & Philander 1977). The density stratification is characterized by the 
Brunt-Vaisala - or static stability - vertical profile N2(z) ,  which may be everywhere 
bounded and non-zero (continuous stratification) or equal to a collection of Dirac’s 
delta functions (layered model). The linearized equations for the velocity components 
(u, i, w), the deviation of kinematic pressure p ,  and the isopycnals vertical displacement 
5 are 

(2.1 a) 
a, v = - ayp -fi, (2.1 b) 

a t 5  = w, (2.1 d )  
a,w = -aa,u-ayv, (2.1 e) 

where f (  = By) is the Coriolis parameter. Note that 6 enters in the buoyancy term in 
(2.1 c) and the density conservation law (2.1 d) .  

0 = -a ,p-N25,  (2.1 c) 
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Let us assume a common vertical structure for the pressure and the zonal and 

(2.2) 
where c2 is the separation constant. This implies a, = p / c 2  from (2.1 c) and thus < is 
eliminated as a prognostic variable. No further mention of the (common) vertical 
structure will be made, save for the value of c, which must be in the internal-waves 
range (order of metres per second) in order for the unbounded equatorial P-plane to 
be a good approximation of the spherical geometry. 

meridional velocity components, in the form 

a,"-2 U P ,  u, v>l = - c-2(p,  u, v), 

The evolution equations then reduce to 

atp = -cC2a,u-C2ayv, (2.3 a )  

a, = -asp +fv,  (2.3b) 

a, 0 = -ayp- f i .  ( 2 . 3 ~ )  

This system has several conservation laws, which are the linearized version of truly 
nonlinear ones (Ripa 1982). The linearized potential vorticity perturbation, given by 

6 := a, -ay u-fp/c2, ( 2 . 4 ~ )  

satisfies a, c+pv = 0, (2.4b) 

which is the linearized version of dqldt = 0; energy and pseudomomentum, have 
(linearized) densities given by 

E := ;(u2 + v2 +p2/c2)  ( 2 . 5 ~ )  

and P := up/cZ - 'g2/2p, (2.5b) 

and are conserved, in the sense of 

8,E+V.(pu)  = 0 

and a, P+a,(u2-v~+p2/c2)/2+ay(uv) = 0. 

(2 .6~)  

(2.6b) 

Note that if the horizontal domain has rigid boundaries where the normal component 
of the velocity vanishes, then sl E is a constant of motion. In order for sj P to be an 
integral of motion, though, the rigid boundaries must be zonal. 

3. Kelvin solution and the potential field 
I will now find a particular solution, the Kelvin wave, and reduce the evolution 

problem of the non-Kelvin (i.e. dispersive) part of the wave field to the solution of a 
single equation. From (2.3a, b)  one easily finds 

(a, c a,) ( p  f cu) = - c2 ay v cfu, (3.1) 
which shows that p k cu (and thus p and u) can almost be obtained from v, integrating 
along the characteristics x = x,, k ct. 'Almost' means in the sense of up to the addition 
of the general solution of the homogeneous equations (right-hand side equal to zero) 
which, using (2.3c), is found to be given by 

p = K(t - sx) exp ( - &q3y2), 

u = sp, v = 0, 
( 3 . 2 ~ )  

where K( ) is arbitrary and sc = k 1 ; clearly the only acceptable solution (in the 
unbounded P-plane, - 00 < y < 00) corresponds to 

sc=  1, (3.2b) 
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which is the Kelvin wave. (If one writes a ‘dispersion’ relation for this hyperbolic 
component, then s coincides with the slowness defined below.) 

In order to describe the non-Kelvin part of the solution to (2.3), a potential q(x, t )  
is introduced, such that 

P = -c2(a,,+fa,)p,, (3.3a) 

u = (c2 a,, +fa,> p,, (3.3b) 

= (a,,-C2a,,>p,; ( 3 . 3 4  

these expressions are suggested by operating with a, f ca, on (3.1) and then 
eliminating u or p (note that the streamfunction in the quasi-geostrophic limit is given 
by - c2 azq). Given the physical fields ( p ,  u, v), p, is undetermined to within a solution 
of the homogeneous equations, viz. 

(3.4) 

with arbitrary A( ) ; i.e. c2(aty +fa,) qs = (c2 a,, +fa,) qs = (att - c2 a,,) qs = 0. Thus 
q + q + vs is a gauge transformation, which leaves the dynamical fields unaltered. 
(Notice that qs is not an ‘westward-Kelvin’ solution, i.e. (3.4) is not equal to (3.2a) 
with sc = - 1 ; in fact, the latter diverges away from the equator, whereas (3.4) does 
not.) 

vs := A(x + ct) exp (- py2/2c), 

Substitution of (3.3) in (2.3 c) gives the following evolution equation: 

29 := (att + f 2  - ~ 2 ~ 2 )  a, p, + ~ 2 p .  vv = 0, (3.5a) 

where p(x) := z“ x V f  = ( - p, 0,O) (3.5b) 

is the p-vector field; a similar equation, without the triple time-derivative term, can be 
found for topographic Rossby waves (Ripa & Carrasco 1993). 

Let me consider now the conservation laws associated with this evolution equation. 
A priori, they might not be the same as (2.4) and (2.6) because p, describes only the non- 
Kelvin part of the wave field. However, it will be shown at the end of this section that 
the potential vorticity, energy and pseudomomentum conservation laws are indeed 
satisfied exactly by the subsystem modelled by (3.5). 

In the first place, a,2v = 0 may be seen to be equal to the potential vorticity 
equation (2.4 b), where 

5 := (a,, +f2 - c2v2) a, - pa, p,. (3.6) 

Consider now the quadratic integrals of motion. The expression p,Yq = 0 is 
equivalent to the following conservation law 

I = (a, p,)z - 2p, a,, Qj -fzp,2 - c2(vp,)2 

(3.7) I F = c2(2p,v a, p, -pv2). 
a, I+V.  F = 0: 

(Notice the appearance of high time derivatives both in (3.5) and (3.7) on account of 
having transformed from three fields ( p ,  u and v) into only one (v).) The variable I 
corresponds to neither the energy density nor the pseudomomentum one, defined in 
(2.5). In fact, conservation laws (2.6) may be independently derived from (3.5) in the 
following way : 

1 (3.8) 
vYv = 0 * a, E + V .  FE = 0, 

[ a , 2 ~ = O * a a , P + V . F p = 0 ,  

where v[q] and 5[9] are given by (3.3 c) and (3.6), respectively. The expressions for E[p,], 
FE[q], P[p,] and F,[p,] are complicated (e.g. see (A 3) and (A 5)  in the Appendix); the 
fluxes are not necessarily those given in (2.6a, b), i.e. they may differ from them by a 
trivially non-divergent vector field. 
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FIGURE 1. Dispersion relation between the frequency w and the zonal wavenumber k of equatorial 
waves, with a vertical structure characterized by the separation constant c ;  /3 is the meridional gradient 
of the Coriolis parameter. For the normal modes, n is a non-negative integer which characterizes the 
meridional structure; the dot-dashed line represents a spurious n = 0 solution. On the other hand, for 
ray theory, n is a continuum variable which binds the variations of the meridional position y and 
wavenumber 1( y )  by 12c2 + P2y2 = (2n + 1) /3c ( = w2 - k2c2 -pk/w). The dashed and dotted lines 
represent the zero and infinity values of the zonal group velocity aw/ak. 

The important result is that the potential vorticity, energy and pseudomomentum 
conservation laws are exactly satisfied after the filtering of the Kelvin part of the wave 
field represented by ( 3 . 3 ) ;  the reason for this is explained below. These three 
conservation laws correspond to similar ones in the fully nonlinear problem, whereas 
(3.7) is probably a product of the linearization. However, it will be shown that in the 
RT limit, the phase averages of I ,  E and P are related. 

Normal modes 

Using cp = y?.,((P/c)~y)exp[i(kx-wt)], it is found that (3.5) is satisfied if the $.,( ) are 
Hermite functions (for - cc < y < a, n is a non-negative integer), and the following 
dispersion relations are satisfied : 

w(w-kc) = /3c (n  = 0) ,  (3.9a) 

P (3.9b) w2 k 
--/3-=k2t-(2n+l)- ( n =  1,2, ...). 
c2 0 c 

For each value of k ,  (3.9a) has two solutions, the Yanai waves, and (3.9b) has three, 
two Poincare waves and one Rossby wave (see figure 1). 

It is easier to write down the solutions of (3.9) in parametric or implicit form, using 
the slowness 

s := klw; (3.10a) 
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namely 

(3.10 b)  
Poincare 
Rossby - 00 < sc d 2n+ 1 : n > O :  w 2 = p c  

1 -szc2 

From these expressions it is natural to choose the point corresponding to sc = - 1 as 
the boundary between the Poincare-like and Rossby-like parts of the Yanai waves. The 
corresponding wavenumber and frequency define appropriate scales for the equatorial 

(3 .11)  
P-plane, in the form 

these scales are used in figure 1 (see the quadruple crossing at k = -f and w = 6). 
Notice that 6 is both a PoincarC and a Rossby frequency scale, in the sense that 6 = 
kc = /3/2k. The inverse of f can be rightly called the equatorial deformation radius. 
(Other common definitions are a factor of 2/2 larger or smaller than this one.) 

The roots of (3.9b) for n = 0 are both solutions of (3.9a) and a third one, which is 
precisely rpS; since in the present formalism addition of plS is but a gauge 
transformation, its presence is innocuous. On the other hand, the equation for v 
mentioned in the Introduction is but 2 v  = 0, where the operator 9 is defined in (3.5a). 
As a solution of this equation, ZI cc vS is spurious because it implies p ,  u - co as 
lyl+ co. In a Galerkin expansion using the normal modes, this spurious solution is not a 
major problem, because it is simply not included in the series. However, with other 
methods (for instance, RT) it may not be possible to eliminate the spurious solution in 
zi a priori. This is the advantage of working with the equation 9 v  = 0, introduced here, 
rather than with 9 v  = 0. 

Moore (1994) found independently the scalar representation of the linearized 
perturbations and addressed the interesting - and usually eluded - problem of the 
Coriolis force due to the horizontal component of Earth's rotation vector. This author 
works with the three-dimensional representation, which can be obtained using (2.2) in 
(3.3), i.e. replacing c2rp by $ and rp (= c?$) by - a z ( W 2  2, $). Moore (1994) points out 
that the Kelvin mode is derivable from a certain potential vK+(x - ct, y ) ,  which 
when introduced in (3.3) gives (3.2). However, this function satisfies i3irpK+ = 
(f '/c2 + P I C )  plK+ and therefore diverges exponentially in the unbounded P-plane, which 
is the domain used in this paper. 

With one or two zonal walls (Philander 1977; Cane & Sarachik 1979) the dispersion 
relation of the normal modes is still given by (3.9b) but with the factor (2n + 1 )  replaced 
by a certain constant pn. The three roots of (3.96) must be included for all n 2 0, i.e. 
there is no longer a spurious solution (with n = 0). A very important result is that 
p, > 2n + 1 ,  which implies w2 k2c2 for all dispersion curves. The structure of the 
normal modes is also modified because rp must vanish at a zonal coast, as implied by 
( 3 . 3 ~ )  together with w 2  + k2c2. In sum, with one or two zonal walls, the 'spurious' 
solution becomes a physically acceptable one, and it is no longer equal to the gauge 
mode vs given by (3.4). 

With two zonal walls, the westward Kelvin mode, (3.2a) with sc = - 1 ,  is also 
physically acceptable and can be derived from a certain potential vK- (x+  c t , ~ ) .  Notice, 
however, that the potentials rpK+ do not satisfy the evolution equation (3.5) but rather 
(a, Ifr c a,) rpKt = 0; consequently, Kelvin rays differ from those of the 9-field (developed 
in the following sections) because of the former have no meridional propagation. 

f := (P/2C)+, 6 := (;pep; 
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The normal modes provide an orthogonal and complete basis for the expansion of 
the fields ( p ,  u, v), in which the spurious solution of the unbounded case, v cc vs, does 
not appear (Matsuno 1966). This expansion is useful to explain why the potential 
vorticity, energy and pseudomomentum conservation laws are exactly satisfied by the 
state space described by 9, which does not include the Kelvin mode. Firstly, the Kelvin 
mode has = v s 0 and thus (2.4) is trivially satisfied. Secondly, both the energy and 
pseudomomentum have a diagonal representation in the normal modes basis, namely 

E = C E a  and P = X s a E a ,  
a a 

(3.12) 

where s, is the slowness of mode a (Ripa 1982). Consequently, excluding the Kelvin 
mode does not break the laws of energy and pseudomomentum conservation. Note 
that the Kelvin mode has the maximum pseudomomentum per unit energy. 

4. Ray theory 

conservation laws (3.7) and (3.8). Proposing the ansatz 
I will now develop the RT approximation to the evolution equation (3.5) and the 

y(x,  t )  = A(x,  t )  eia(x.t), (4.1) 

(4.2) 

the local wavenumber vector and the local frequency are defined by 

k(x, t )  := V ~ ( X ,  t ) ,  w ( ~ ,  t )  := -a, 9 ( ~ ,  t). 

Ray theory is based on the assumption that neither these fields nor the amplitude 
A(x, t )  vary much across a wavelength or during one period; this will be called the RT 
limit, and it will be specified below. In this limit, the physics of the problem is reflected 
in that k and w are not independent but, rather, are related through a dispersion 
relation w = fZ(k, x), i.e. 

"..(E,X) at = 0. (4.3) 

Solutions of this highly nonlinear equation are found by the method of characteristics 
(Lighthill 1978), i.e. by solving the ray equations 

Finally, from (4.4) and (4.2) we obtain an equation for the phase of the form 

d 9  
- = k.  C-W, 
d t  (4.5) 

where C := afZ/ak is the group velocity. This equation is neglected by most authors, i.e. 
by those who limit themselves to the evaluation of ray trajectories. 

Substitution of the ansatz (4.1) into the evolution equation (3.5) gives two coupled 
nonlinear equations for A and 9, namely the real and imaginary parts of equation (A 2) 
in the Appendix. Multiplying (A 2) by - A ,  the real part gives 

a,(i) + v. ( F )  = 0, (4.6) 

where ( ) denotes an average in one cycle (say, one period or one wavelength), and ( I )  
and ( F )  are fully given by (A 1). It is interesting to notice that, so far, no 
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approximation has been made: the conservation law (3.7) is exactly satisfied after the 
averaging. 

In the RT limit described above, (at least) the right-hand side of (A 2) is neglected; 
the imaginary part then gives the dispersion relation 

f " d  k 
C 2  +B;+k2+Z2 = 0, (4.7) 

suitable for the solution of the ray equations (4.4) and (4.5). Consistent with this limit, 
the expressions in (A 1) for (4.6) are replaced by 

( I )  = +(2w2 + pc2k/W) A', (4.8a) 
( F )  = !j(2kw-B)A2 ( I )  C, (4.8 b) 

where 
2 k ~  - p  C =  

2w2/c2 + Pk/w  
(4.9) 

is the group velocity corresponding to the dispersion relation (4.7). Equations (4.8), 
and (A 4) and (A 6) in the Appendix show that 

( E )  = i(W2-k2C2) ( I ) ,  (4.10a) 

(4.10b) 

Notice that for a ray, ( P ) / ( E )  is equal to the slowness k / w ,  i.e. the same relation 
found for the normal modes in (3.11). Since neither x nor t appears explicitly in the 
dispersion relation (4.7), it follows that (a, + C - V )  k = 0 and (a, + C .  0) w = 0. 
Consequently, in this limit (4.6) is equivalent to the energy and pseudomomentum 
conservation laws 

a , ( E ) + V . ( ( E )  C )  = 0, (4.1 1 a) 

a , ( P ) + v * ( ( P )  C) = 0.  (4.1 1 b) 

The amplitude A is calculated in the following form. Equations (4.6) or (4.1 1) are 
equivalent to dA2/dt+ A 2 V .  C = 0. Now, assume that a solution of (4.4) and (4.5) is 
written in the implicit form x = x(a, b, t), k = k(a, b, t),  9 = $(a, b, t), where (a, b) is a 
pair of parameters that define each point in the ray. From the chain rule and (4.4) it 
follows that the Jacobian 

(4.12) 

satisfies dJ/dt = J V .  C, and therefore the amplitude is simply of the form 

A(x, 0 = A,(a, b) (J,/J);, (4.13) 

where J ,  is the value of J at some reference point in the ray path, where the amplitude 
is set to be equal to A,. At a caustic the Jacobian Jgoes through a zero, and a $IT phase 
jump must be added to 9, on account of the square root in (4.13). 

The relationship between the amplitude of q and the energy and pseudomomentum 
densities, given by (4.8) and (4.10), shows that: (i) the amplitude A diverges as 
w2+ k 2 2 ,  i.e. when approaching the dispersion relation curves of the Kelvin mode and 
the gauge mode qs (see the two straight lines in figure 1); (ii) the amplitude A vanishes 
as w3 -++/3c2k, i.e. when approaching the infinite-group-velocity line (see (4.9) and the 
dotted curve in figure 1). 
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5. Solution of the ray equations 
The general solution to the ray equations, (4.4) and (4.5), for the dispersion relation 

(4.7) is presented next. At the end of the section, the corresponding RT limits are 
discussed and are shown to be related to the parameter y ,  given by 

(5.1) 

consequently y 9 1 means either w 9 D (the Poincare' limit) or w < 5 (the Rossby limit); 
a sufficient condition for y 9 1 is f" + 12c2 9 pc. In order to present the results, it is 
convenient to define a proper time 

p := ( t  - to) /7 ,  ( 5 . 2 ~ )  

where r := O / ~ C  + kc/2w2. (5.2b) 

Any ray trajectory, a solution of (4.4) for the dispersion relation (4.7), can be written 
in the form 

[x - x,, yl = y(c/p>i I. cos a, sin p sin a], (5.3a) 

where a is a parameter of the ray, equal to the slope of the equatorial crossings (which 
happen at x = x, mod (y(c/p);n cos a)  and t = t ,  mod (~7)). The corresponding 
wavenumber is given by 

[k +p/2w, I ]  = y@/c)fr [cos a, cosp sin a]. (5.3b) 

Finally, the phase, obtained by integrating (4.5) along the ray, is 

9 = 9, + i y 2  sin2 ah + sinp cosp) + k(x-x,) - wt ,  (5.3 c) 

where 9, - wt, is the phase at the equatorial crossing. 
= 

-$tmod(x)), and conserves its values of w ,  k and aw/i3k. The approximation of ray 
theory might break down for Isin a( 4 l/y, namely for rays so shallow that the turning 
latitude is a fraction of the deformation radius. The second term of the expression for 
9 equals the path integral Z(y) dy. 

Poincare' and Rossby limits 

Each ray moves along a sinusoid, between the turning latitudes f y(c/p) i  sin 

In the Poincark limit, y2 N w 2 / p c +  co, the dispersion relation (4.7) is replaced by 

w 2  = f z  + (k2 + I ') c2, (5.4) 

and the solution, (5.3a-c), to the ray equations is approximated by 

[x - x,, y] = ( w / p )  I. cos a, sin p sin a], (5.5a) 

(5.5b) 

(5.5c) 

[k, I ]  = (w/c)  [cos a, cosp sin a], 

9 = 9, + (w2/4pc) [sin 2p sin2 a + 2p( 1 + cos2 a)] - wt, 

where p = ( t  - t,) pc/w, i.e. r = w/pc. 
On the other hand, in the Rossby limit, y2 - pc/4w2 + 00, the dispersion relation is 

- Pk 
= k2+12+f2/c2  (5.6) 
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instead of (4.7), and the solution to the ray equations is 

[x-x,,y] = -(c/2w) bcosa ,  sinpsina], (5 .7~)  
(5.7b) [k, I ]  = - (p /2w)  [ 1 + cos a, cos p sin a],  

9 = 9, + (pc/ 160~) [sin 2p sin2 a + 2p( 1 + cos a)'] - wt, (5.7 c) 

where ,LL = ( t  - to) 2w2/kc, i.e. T = kc/2w2 EE - (1 +cos a) /3c/4w3. Notice that for w > 0, 
p decreases with time (T < 0), and consequently y was chosen to be negative. 

Construction of the solution 

These expressions for x, k and 9 are sufficient to obtain the RT approximation (4.1) 
for the solution of the evolution equation (3.5). This is done by specifying the phase 
9. along some closed curve r, as a function of time. For instance, Schopf et al. (1981) 
choose 9 = --wt at an eastern meridional coast, x = L,  whereas Kessler (1990) did 
likewise for an 'inclined' coast, x = L-ay. The definitions (4.2) are then used to 
calculate the wavenumber parallel to r and the instantaneous frequency (which need 
not be constant); the other component of wavenumber is calculated using the 
dispersion relation. Thus at each point of r there is, at all times, a well-defined value 
of k and of 9 with which it is possible to integrate (4.4) and (4.5) along the trajectory. 
Notice that the ray paths may be time dependent, namely when w is not uniform. 

Each ray then has two parameters (for instance, a label in r a n d  the value of t when 
it left that curve), which can be related to x, and to of the general solution presented 
above. Choosing the amplitude at r, say A,, then (4.12) and (4.13) are used to calculate 
A along the path, and the physical fields are obtained from the RT limit of (3.3), which 
gives 

p = c 2 ( h  + iJk) A ei4, (5 .8~)  
u = - (c2kl+ ifw) A ei4, (5.8b) 
0 = (0' - k2c2) A ei9. (5 .8~)  

Recall that, in general, k = k(x,  t )  and w = w(x, t).  
This is the right place to assess the degree of accuracy of the solution, in both RT 

limits. Assume that the frequencies excited at r a r e  such that y = O(E-') with E +  0. The 
phase field is formally of the form 

9(x, t )  = &-2o(&x, E2 It), (5.9) 
where the upper (lower) sign corresponds to the PoincarC (Rossby) limit. Therefore the 
accuracy is x = O(E-'), V = O(E), k = O(E-'), t = O ( E - ~ + ~ ) ,  a, = O(c2?l), and w = 
O(cf l ) ,  where E is (for instance) the ratio of the equatorial deformation radius to the 
horizontal lengthscale (Jacobs used the Earth's radius instead of the latter). 

Let me analyse first the PoincarC limit. Using the above estimates in the imaginary 
part of (A 2), it is found that the three terms in the dispersion relation (5.4) are of the 
same order (recall thatf' = O ( E - ~ ) ) ;  relative to them, the p-term in (4.7) is O ( E ~ ) ,  and 
the leading term neglected in the right-hand side is O(c4). Exactly the same scaling is 
obtained for the p-term and the leading neglected term in the amplitude equation (4.6). 
The p-term can then be included, to improve the accuracy from O ( 2 )  to O ( E ~ ) ;  this 
term is responsible for the shift of the frequency minima to the left of the k = 0 axis 
in figure 1. 

On the Rossby limit, on the other hand, the three terms in the dispersion relation 
(5.6) are of the same order and, relative to them, the w2-term in (4.7) is O ( E ~ ) .  This is 
the same order as that of the leading term neglected in the right-hand side of (4.7). An 
identical result is found for the amplitude equation. Therefore the Rossby-limit 



Horizontal wave propagation in the equatorial waveguide 277 

solution, (5.6) and (5.7), is already accurate to O(c4), and use of the general solution, 
(5.3a-c), does not represent a consistent improvement (unlike the case of the PoincarC 
limit). 

In sum, the general solution, (5.lE(5.3 c), provides an O(c4)-accurate solution in 
both limits, w = O(E' l), but for low frequencies, (5.6) and (5.7) has the same degree of 
accuracy. 

6. Applications 
In the examples presented here, w is chosen to be constant; p may be taken as a 

parameter along the ray path, unrelated to time. The phase field in (5.3 c) has the simple 
form 

where S and its arguments are order unity. In this particular case, both the 
wavenumber and amplitude fields, k(x) and A(x) ,  are time independent. 

Normal modes 
A quantitative relation can be found between the refraction experienced by the rays, 
which prevents them from getting away from the equatorial zone, and the existence of 
normal modes. The dispersion relation obtained is exact, and amplitudes and phases 
correspond to the WKBJ approximation within the turning latitudes. 

Consider a set of rays originated along the equator (the curve I' mentioned above) 
with phase kx - w t ,  with constant w and k.  This corresponds to a fixed value of a and 
of to in (5.3a-c), and variable x,, with 9, = kx,. The Jacobian (4.12) equals 

9(x, t )  = y"((p/c)+x/y) -wt, (6.1) 

It is apparent in figure 2 that the solution is the superposition of many parts: one made 
of the rays going from the southern caustic to the northern one (solid lines), the return 
version (dashed lines), and so on. But, for a given value of o not all angles a are 
possible; there must be a perfect phase matching between the 'original' rays and those 
that have made two turns, one at each caustic, otherwise incoherent superposition 
destroys the signal. 

Consequently, the solution is composed'ol5nly two aiserent 'part$, the sum u f k d k f r  
results in a standing pattern in the meridional direction; the only apparent phase 
propagation is along the zonal coordinate. Each part is of the form (4.1) with A = 
1 /(cos p); and 9 = +y2 sin2 a@ + sin p cos p) + kx - wt. The amplitude diverges at the 
caustics, which correspond to p = ;(2m+ 1 ) ~  with integer m; this divergence is a 
complication of ray theory which can be resolved (see for instance Ludwig 1966; 
Peregrine & Smith 1979; Klauder 1988). Because of the square root, the phase jumps 
by -+K at each caustic. 

Consider then any ray that after leaving the equator at'(x,, yo ="u, t i )  returns' to' tnAr 
line, with the same group velocity, at (x, = xo + 2ny(c/,!@cos a, y1 = 0, tJ, i.e. after 
turning in each of both caustics. (See for instance, the path that goes from one extreme 
to the other in figure 2.) Since p varies from 0 to 2n, the total phase change experienced 
by that ray equals [y2n sin2 a -in - ;IT] + k(x, - x,) - w(t ,  - to). But since the phase of 
is imposed to be kx-wt  along the equator, the expression between square brackets 
must be equal to 2nn, with n integer, in order to avoid destructive interference. 
Therefore, y2 sin2 a equals 2n + 1 ,  which implies 

12c2 +fz = (2n + 1)pc (n = 0,1, . . .), (6.3) 
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0 X 

FIGURE 2. Set of rays that make up a normal mode. The equator, y = 0, is halfway between the two 
caustics (the northern and southern envelope of the rays) situated at y = -t y(c//3)'sina(= -t Y ) ,  
where y2 = d / / p c  + /pc/402 and a is the slope of the equatorial crossings. The solid lines show the rays 
that go from the southern caustic to the northerlone, whereas dashed lines show the return version; 
the net displacement of each ray is X =  y(c//p)'cosa. Tuning the parameters s? that there is no 
destructive interference after making several turns, results in y sin a = (2n + 1)' which the exact 
dispersion relation of equatorial modes. 

see (5.3a, b);  on replacing (6.3) in (4.7) one gets exactly the dispersion relation of the 
equatorial trapped modes (3.9), as promised. (The periodicity of the rays' trajectory 
should not be confused with that of the normal mode, viz. neither x,-x, ,  is equal to 
the wavelength nor t ,  - to is equal to the period of the wave.) The ray path equation 
(5 .3~)  shows that vanishing zonal group velocity corresponds to cos a = 0, i.e. to y2 = 
2n + 1 ; PoincarC and Rossby normal modes are restricted to y 2  2- 2n + 1, while Yanai 
modes reach the minimum value y 2  = 1 at 2w2/Pc = 1 (sc = - l), i.e. at the values 
defined in (3.11). 

Adding the contribution of both families of rays it is found that 

cos (#n + 1) (,u + sin p cos p) - in:) ei("+), (Pw- 
1 

Icospp 
(6 .4~)  

y = ((2n + 1) c//$ sinp, (6.4b) 

which is the WKBJ approximation to the Hermite function $,(@/c)iy) (Ripa 1983). 
A similar argument in the PoincarC (high-frequency) limit, i.e. using (5.5) instead of 

(5.3 c) for 9, yields (w2/lpc) sin2 a = 2n + 1. This represents the normal mode dispersion 
relation w2 = k2c2 +(2n+ 1)Pc, which is a good approximation to two roots of the 
exact one, (3.9b), corresponding to making 1x1 + 2n+ 1 in (3.10b). 

On the other hand, in the Rossby (low-frequency) limit, i.e. using (5.7) instead of 
(5.3 c) for 9, (Pc/4w2) sin2 ct = 2n + 1 results. This, in turn, implies the normal mode 
dispersion relation w = - Pk/[k2 + (2n + 1) P/c ] ,  which is a very good approximation to 
the remaining root of the exact one, (3.9b), which corresponds to making lscl 9 1 in 
(3.10 b). 

These two approximations break down for n = 0 or y sin a = 1, at w2 z $/3c, which 
implies y z 1 and sc M - 1, i.e. the region where the Yanai wave makes the transition 
from the PoincarC to the Rossby family. From the point of view of ray theory, this 
corresponds to sina x 1, i.e. rays that propagate meridionally. 

Finally, the normal modes for the system with one or two walls, the problem studied 
by Philander (1977) and Cane & Sarachik (1979), can also be estimated using RT. The 
procedure Is the same as developed above, except that at the reflection on a rigid wall 
the phase does not change by in:, as in a caustic, but by n: (Ripa & Carrasco 1993). If 
at least one of the walls is within the turning latitudes corresponding to the frequency 
of the mode, i.e. there is reflection on a rigid coast, then the eigenvalue y sin a (= pa in 
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0 X 2x 3x 4x 

FIGURE 3. First four caustics (dashed lines) for a point source located at the far left of the figure in 
the equator (solid line). Only the eastern part is shown, because the western part is symmetric. The 
ray that departs with a 45" azimuth is also drawn. I? this and the following figures, extreme latitudes 
(north and south of the source) are at y = -t-y(c/P)'( = +_ Y ) .  In the PoincarC limit (high-frequency) 
the meridional bounds are f o/P; in the Rossby limit (low-frequency) they are f c/2w. The caustics 
have cusps in the equator, at a distance m r Y ( =  m X )  from the source (with integer m), which are 
nearly focusing points, where the energy is concentrated. 

0 X 

FIGURE 4. Trajectories of 40 rays that go from the source, where they leave 9" apart, to the first 
caustic. Zonal and meridional scales (X and Y )  are defined in the previous figure. The energy density 
decreases, and so does the amplitude, where the rays diverge. There is both east-west and 
north-south symmetry. 

$ 3 )  is the solution of a transcendental equation; this question will not be pursued any 
further here. 

Point source 
Consider now a point source somewhere in the equator; this point is a limiting case of 
the curve rmentioned above. The ray trajectories are given by ( 5 . 3 ~ )  with x,, fixed (say, 
x, = 0), 9, = 0, and a varying from 0 to 27c. Near the origin the rays are radial and 
uniformly distributed in the azimuth a. The Jacobian (4.12), equals 

and vanishes at the caustics, given by 

(6.5) 

where rn = 1,2, . . . , and both k signs make up for the four quadrants; the eastern half 
of the first four caustics is shown in figure 3. The caustic does not correspond to the 
turning latitude of the rays, unlike in the normal modes case. 

The caustics have cusps in the equator at x = rnnyv/c)i, with rn the non-zero 
integers (,u = rn7c), similar to the focusing point found by Schopf et al. (1981); Jacobs 
(1967), who dealt with the initial value problem, found foci in space-time. Figure 4 
shows 40 rays going from the origin, where they leave 9" apart, to the first caustic. The 
paths are symmetric under reflections in x and y ;  on the other hand, the phase will be 
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FIGURE 5. Trajectories of the 1 1  rays of figure 4 that start in the first quadrant (top) and then go from 
one caustic to the next one (below). Other parts are obtained by east-west and north-south reflection 
of these drawings. Notice that higher contributions have small amplitude except near the focus of the 
target caustic. 

shown to possess only meridional symmetry. The full solution is the superposition of 
the contribution of the rays that go from the origin to the first caustic, those that go 
from the first to second, and so on. Trajectories are shown in figure 5 for the 11 rays 
of figure 4 found originally in the first quadrant (the other three sets of rays are omitted 
for simplicity and can be imaged by east-west and north-south reflections). Notice that 
the rays are tangent to the caustic, at the point of touching. The rays fill the band 
between the two extreme turning latitudes y = -ky(P/c)k, and diverge with time, with 
a resulting decrease in amplitude and energy density, except in the neighbourhood of 
the foci (where the caustics touch the equator). 

The phase field has a marked frequency dependence; next are presented the cases 
corresponding to the PoincarC (high-frequency) and Rossby (low-frequency) limits. 

In the PoincarC limit, (5.4) and ( 5 . 9 ,  the successive caustics are still given by (6.6), 
replacing y by o/(Pc)i. Contours of the function S,  defined in (6.1), are presented in 
figure 6 for the rays that go from the source to the first caustic, and in figure 7 for the 
rays that travel from the first to the second caustic. In this limit, unlike in the Rossby 
one or for the case of finite o, there is perfect east-west symmetry. At the beginning, 
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0 

FIGURE 7. As in figure 6, but for the rays that go from the first to the second caustic. Contour interval 
is now AS = ~ / 8 .  Far from the source, phase propagation is as in figure 6. The southward phase 
propagation in the centre corresponds to a relatively small amplitude (see figure 5 )  and, furthermore, 
will be partially compensated by a northward phase propagation due to the component which is a 
north-south reflection of this one. 

0 xc/20 

FIGURE 8. Phase function, S(2xw/c, 2yw/c),  in the Rossby limit and for the rays that travel from the 
source to the first caustic. The complete phase is 9 = (pc /w2)  S-wt .  S increases to the west and the 
contour interval is A S  = 71/20. There is north-south symmetry but not east-west. To the east of the 
source, x > 0, the phase propagation becomes quickly zonal; more precisely, 9 FZ - (/j’x/w + wt) .  To 
the west, phase propagation is extremely rapid. 

0 x.C/W 

FIGURE 9. As in figure 8, but for the rays that go from the first to the second caustic. S increases to 
the west, the contour interval is now A S  = 71/8. Far from the source, phase propagation is as 
described in figure 8. 

the phase contours are nearly circular because the Coriolis effect is unimportant. 
Further away from the source, phase propagation becomes nearly zonal. For large 
values of p, (6.5) shows that significant amplitudes (small J) correspond to a M 0 or 
a M IT. By using this in (5.5) one obtains 9 M (w2//pc)p-wt M w(lx l /c -  t ) ,  for 1x1 >> w/P ,  
which corresponds to short PoincarC waves. 

In the Rossby limit, (5.6) and (5.7), the successive caustics are still given by (6.6), 
replacing y by -(,!3c)i/2w. Contours of the function S,  defined in (6.1), are presented 
in figure 8 for the rays that go from the source to the first caustic, and in figure 9 for 
the rays that travel from the first to the second caustic. Unlike for the Poincare case, 
there is a clear distinction between east and west in this limit. 

East of the source, phase propagation is nearly zonal and westward (i.e. zonal 
phase speed is negative). More precisely, making a M 0 in (5.7), as before, one gets 
9 M (/3c/2w2)p - wt M - @ x / w  + wt), for x 9 c/IwI, which corresponds to short Rossby 
waves. 
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West of the source, on the other hand, phase propagation is extremely rapid. If 
01 = x + v ,  with IvI 4 1, in (5.7) it follows that k = O(v2) but l ,y  = O(v) and x = O(vo); 
therefore w z -/3k/(Z2 + /32y2/c2), which corresponds to very long (non-dispersive) 
Rossby waves. In particular, for x < 0 and y = 0, it is S = 0 (instantaneous phase 
propagation!). This represents the limit v+ 0, for which the zonal group velocity, 
-4w2//3v, eventually diverges (see figure 1 and the last paragraph in §4), no matter how 
small 2w2//3c may be. Clearly the validity of ray theory must break down in the 
neighbourhood of the negative x-axis, as a consequence of the asymptotic lack of 
dispersion of Rossby waves in the limit k +  0. 

7. Concluding remarks 
Linearized free dynamics in the equatorial /3-plane is studied, considering a single 

vertical mode, characterized by the separation constant c; an appropriate frequency 
scale is given by 3 = ($'3c)i. The fields of the pressure and both velocity components are 
written - for linear dynamics - in terms of a single potential y and its first and second 
time derivatives; a single equation controls its evolution. Introduction of this potential 
eliminates the problem of the spurious solution, which is encountered when working 
with a single equation for the meridional velocity component. In the new formalism, 
addition of the spurious solution is but a gauge transformation of the potential, which 
leaves the dynamical fields unaltered. The new formalism filters out the Kelvin waves 
and retains the correct conservation laws of potential vorticity, energy and 
pseudomomentum. 

The single evolution equation is suitable for the development of the ray theory (RT) 
approximation. The general solution of the ray equations is derived; this includes the 
ray paths and amplitude, and also the often-neglected phase field. This solution is 
found to be asymptotically correct in either the Poincart (w + 3) or Rossby (w < 3) 
limits. More precisely, it represents an O ( Y - ~ )  approximation, where 27' = ( w / & ) ~ +  
( & / w ) ~  is a large parameter. 

Two monochromatic examples are presented to illustrate the method : the meridional 
normal modes and the solution corresponding to a point source on the equator. 

In the first case, the exact dispersion relation is obtained, by requiring a phase match 
between a set of rays that leave the equator with phase proportional to the longitude, 
and those that have turned at both caustics (turning latitudes). 

In the second example, the caustics bend towards the equator, which they reach, in 
the form a cusp, at a focal point. Similar foci were found by Schopf et al. (1981), in 
another monochromatic problem, and by Jacobs (1967), for an initial value problem. 

A typical frequency scale 3 for the first baroclinic mode in the tropical Pacific (c in 
the range 2.5-3ms-l) corresponds to a period of about 13 days, which implies a 
deformation radius c / 3  of 490 km (4.4'). For a point source with a one-month period 
(y = 1.66, yP4 = 0.13) the meridional half-width y(c//3); equals 580 km (5.2') and the 
distance between foci xy(c//@ equals 1.8 Mm (16'). Moreover, the wavenumber scale 
y(/3/c): corresponds to a wavelength of 1.3 Mm, twice that of short Rossby waves. 
Identical scales are obtained for the other frequency which gives the same value of y, 
i.e. for a period of 5.6 days (5.6 = 13'/30). The order of magnitude of these numbers 
indicates that phenomena predicted by ray theory, like focusing, may be useful in the 
understanding of equatorial dynamics. 

The two main results of this paper are the description of the non-Kelvin wave field 
in terms of a single scalar potential and its use in ray theory, stressing the importance 
of the amplitude and phase fields, in addition to the ray trajectories. An interesting 
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extension would be to perform the ray theory calculations in three dimensions, e.g. using 
the potential developed by Moore (1993). In order to apply these results to realistic 
oceanic or atmospheric phenomena one should include the effects of mean currents (see 
for instance Chang & Philander, 1988). These important extensions are beyond the 
scope of the present paper. 

I want to express my gratitude to Drs Julio Sheinbaum and Jose Ochoa for 
comments and corrections, and to the CONACyT (Mixico) for its support under grant 
1282-T9204. 

Appendix 

obtained that 
Taking successive time derivatives (denoted by a subscript t )  of rp = Aei9, it is 

cp, = (A, -iwA) ei6, 

rptt = (A,, - w2A - iw, A - 2iwA,) e", 

etc. Similarly, it is also found that 

Vg, = (VA + ikA) ei8, 
Vg,, = (VA, + wkA - iwVA + ikA, - iAVw) ei6. 

(A trivial consequence of the definition (4.4) of k and o is k, = -Vw, which was used 
in the derivation of last equation.) These two equations are used to evaluate the 
average, in one phase cycle, of both ingredients of the conservation law (3.7), viz. 

} (A11 
(I) = $(3w2/c2 - f '/c' - k2) A' +(A," - 2AA,,)/2c2 -$(VA)', 

( F )  = (kw-'B>A2+AVAt. 

In order to obtain the representation of the evolution equation (3.5), the following 
derivatives of (4.1) are also needed : 

V2cp = (V'A - k2A + i2k - VA + iAV k) eis, 

cpttt = (A,,, - 3ww, A - 3w2A, + iw3A -b,, A - 3iw, A, - 3iwA,,) ei4, 

V2qt = (V'A - k2A), + w(2k-VA + AV. k) -iw(V2A - k2A) + i(2k - VA + A V -  k),. 

Substitution in (3.5) and multiplication by e@ gives the following horrendous 
equation : 

- ~ W U ,  A - 3dA, + f 'A, 
C2 

+ (kZA), - w(2ksVA + AV. k) 

+ /?a  VA + i [ w ( y  - k2) +/?. k] A = -%+ V2A, +i(2k.VA + AV - k), 
C2 

i ( q ,  A + 30, A, + 3wA,,) 
C2 

-iwV2A, (A 2) + 
which is used to derive the conservation law (4.6) and the dispersion relation (4.7). 

p ,  u and v as a function of rp) are substituted in (2.5a); this gives 
In order to get the representation of the energy density E, the expressions (3.3) (for 

2E = c2y$, + cy2g,: + c4g,iz + f '9; + cp,", + c4q& 

- 2&tt vzz + 2cYcpgt V X  + 2CYcpxy rpt-  (A 3) 
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The last two terms can be replaced by 2 2  y,) - 2c2py, 9,. In correspondence with 
the RT limit, when calculating the phase average of E, only derivatives of the phase are 
retained and not those of k ,  w and A. Thus, since ( 2 2  a,( fy, y,))  = c2 a,(wkA2) this 
term is not included. Consequently, 

4 ( E ) / A 2  = C f 2 + + 2 ~ 2 ) ( ~ 2 + k 2 ~ 2 ) + ( ~ 2 - k 2 ~ 2 ) 2 + 2 P ~ 2 ~ k  
(w2 - k 2 2 )  (2w2 + pC2k/w), (A 4) 

where the dispersion relation (4.7) has been used to simplify the expression. 

some exact divergences it is similarly found that 

which gives the following phase average in the RT limit: 

For the pseudomomentum density (2.5b), using (3.3) and (3.6) and after subtracting 

2p  = 2v,(v,, - c2vz,>, + Pc"; - (vtt, +f 2v, - c2v2v,)2/P, (A 5 )  

4 ( P ) / A 2  = 2 w k ( ~ ~ - k ~ ~ ~ ) + p ~ ~ k ~ - ( d -  f 2 -  k2C2)2/p 

( k / o )  (w2 - k 2 2 )  (202 + pC2k/u). (A 6) 
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